OPEN-SOURCE SCRIPT

Machine Learning: LVQ-based Strategy

Zaktualizowano
LVQ-based Strategy (FX and Crypto)

Description:

Learning Vector Quantization (LVQ) can be understood as a special case of an artificial neural network, more precisely, it applies a winner-take-all learning-based approach. It is based on prototype supervised learning classification task and trains its weights through a competitive learning algorithm.

Algorithm:

Initialize weights
Train for 1 to N number of epochs
- Select a training example
- Compute the winning vector
- Update the winning vector
Classify test sample

The LVQ algorithm offers a framework to test various indicators easily to see if they have got any *predictive value*. One can easily add cog, wpr and others.
Note: TradingViews's playback feature helps to see this strategy in action. The algo is tested with BTCUSD/1Hour.

Warning: This is a preliminary version! Signals ARE repainting.
***Warning***: Signals LARGELY depend on hyperparams (lrate and epochs).

Style tags: Trend Following, Trend Analysis
Asset class: Equities, Futures, ETFs, Currencies and Commodities
Dataset: FX Minutes/Hours+++/Days
Informacje o Wersji
Minor fix.
Informacje o Wersji
Minor edit.
Informacje o Wersji
Added signal reversal. Some assets and TFs require inverting the signal. Mind this is the work in process.
AImachinelearningMoving AveragesTrend AnalysisVolatility

Skrypt open-source

W prawdziwym duchu TradingView autor tego skryptu opublikował go jako open source, aby inwestorzy mogli go zrozumieć i zweryfikować. Pozdrowienia dla autora! Możesz go używać bezpłatnie, ale ponowne użycie tego kodu w publikacji podlega Zasadom Regulaminu. Możesz go oznaczyć jako ulubione, aby użyć go na wykresie.

Chcesz użyć tego skryptu na wykresie?

Wyłączenie odpowiedzialności