PINE LIBRARY
Zaktualizowano Feature Scaling

Library "Feature_Scaling"
FS: This library helps you scale your data to certain ranges or standarize, normalize, unit scale or min-max scale your data in your prefered way. Mostly used for normalization purposes.
minmaxscale(source, min, max, length)
minmaxscale: Min-max normalization scales your data to set minimum and maximum range
Parameters:
source
min
max
length
Returns: res: Data scaled to the set minimum and maximum range
meanscale(source, length)
meanscale: Mean normalization of your data
Parameters:
source
length
Returns: res: Mean normalization result of the source
standarize(source, length, biased)
standarize: Standarization of your data
Parameters:
source
length
biased
Returns: res: Standarized data
unitlength(source, length)
unitlength: Scales your data into overall unit length
Parameters:
source
length
Returns: res: Your data scaled to the unit length
FS: This library helps you scale your data to certain ranges or standarize, normalize, unit scale or min-max scale your data in your prefered way. Mostly used for normalization purposes.
minmaxscale(source, min, max, length)
minmaxscale: Min-max normalization scales your data to set minimum and maximum range
Parameters:
source
min
max
length
Returns: res: Data scaled to the set minimum and maximum range
meanscale(source, length)
meanscale: Mean normalization of your data
Parameters:
source
length
Returns: res: Mean normalization result of the source
standarize(source, length, biased)
standarize: Standarization of your data
Parameters:
source
length
biased
Returns: res: Standarized data
unitlength(source, length)
unitlength: Scales your data into overall unit length
Parameters:
source
length
Returns: res: Your data scaled to the unit length
Informacje o Wersji
v2Updated: Fixed Descriptions
minmaxscale(source, min, max, length)
minmaxscale Min-max normalization scales your data to set minimum and maximum range
Parameters:
source: Source data you want to use
min: Minimum value you want
max: Maximum value you want
length: Length of the data you want taken into account
Returns: res Data scaled to the set minimum and maximum range
meanscale(source, length)
meanscale Mean normalization of your data
Parameters:
source: Source data you want to use
length: Length of the data you want taken into account
Returns: res Mean normalization result of the source
standarize(source, length, biased)
standarize Standarization of your data
Parameters:
source: Source data you want to use
length: Length of the data you want taken into account
biased: Whether to do biased calculation while taking standard deviation, default is true
Returns: res Standarized data
unitlength(source, length)
unitlength Scales your data into overall unit length
Parameters:
source: Source data you want to use
length: Length of the data you want taken into account
Returns: res Your data scaled to the unit length
Biblioteka Pine
W duchu TradingView autor opublikował ten kod Pine jako bibliotekę open-source, aby inni programiści Pine z naszej społeczności mogli go ponownie wykorzystać. Brawa dla autora! Możesz używać tej biblioteki prywatnie lub w innych publikacjach open-source, ale ponowne wykorzystanie tego kodu w publikacjach podlega Zasadom Społeczności.
One does not simply win every trade.
Wyłączenie odpowiedzialności
Informacje i publikacje przygotowane przez TradingView lub jego użytkowników, prezentowane na tej stronie, nie stanowią rekomendacji ani porad handlowych, inwestycyjnych i finansowych i nie powinny być w ten sposób traktowane ani wykorzystywane. Więcej informacji na ten temat znajdziesz w naszym Regulaminie.
Biblioteka Pine
W duchu TradingView autor opublikował ten kod Pine jako bibliotekę open-source, aby inni programiści Pine z naszej społeczności mogli go ponownie wykorzystać. Brawa dla autora! Możesz używać tej biblioteki prywatnie lub w innych publikacjach open-source, ale ponowne wykorzystanie tego kodu w publikacjach podlega Zasadom Społeczności.
One does not simply win every trade.
Wyłączenie odpowiedzialności
Informacje i publikacje przygotowane przez TradingView lub jego użytkowników, prezentowane na tej stronie, nie stanowią rekomendacji ani porad handlowych, inwestycyjnych i finansowych i nie powinny być w ten sposób traktowane ani wykorzystywane. Więcej informacji na ten temat znajdziesz w naszym Regulaminie.