PINE LIBRARY

ApproximateGaussianSmoothing

Zaktualizowano
Library "ApproximateGaussianSmoothing"
This library provides a novel smoothing function for time-series data, serving as an alternative to SMA and EMA. Additionally, it provides some statistical processing, using moving averages as expected values in statistics.
'Approximate Gaussian Smoothing' (AGS) is designed to apply weights to time-series data that closely resemble Gaussian smoothing weights. it is easier to calculate than the similar ALMA.
In case AGS is used as a moving average, I named it 'Approximate Gaussian Weighted Moving Average' (AGWMA).

The formula is:
AGWMA = (EMA + EMA(EMA) + EMA(EMA(EMA)) + EMA(EMA(EMA(EMA)))) / 4
The EMA parameter alpha is 5 / (N + 4), using time period N (or length).


ma(src, length)
  Calculate moving average using AGS (AGWMA).
  Parameters:
    src (float): Series of values to process.
    length (simple int): Number of bars (length).
  Returns: Moving average.

analyse(src, length)
  Calculate mean and variance using AGS.
  Parameters:
    src (float): Series of values to process.
    length (simple int): Number of bars (length).
  Returns: Mean and variance.

analyse(dimensions, sources, length)
  Calculate mean and variance covariance matrix using AGS.
  Parameters:
    dimensions (simple int): Dimensions of sources to process.
    sources (array<float>): Series of values to process.
    length (simple int): Number of bars (length).
  Returns: Mean and variance covariance matrix.

trend(src, length)
  Calculate intercept (LSMA) and slope using AGS.
  Parameters:
    src (float): Series of values to process.
    length (simple int): Number of bars (length).
  Returns: Intercept and slope.
Informacje o Wersji
v2

更新:
trend(src, length)
  Calculate trend statistics using AGS.
  Parameters:
    src (float): Series of values to process.
    length (simple int): Number of bars (length).
  Returns: Slope, intercept, correlation and RSS.
Informacje o Wersji
v3
statistics

Biblioteka Pine

W prawdziwym duchu TradingView autor opublikował ten kod Pine jako bibliotekę typu open source, aby inni programiści Pine z naszej społeczności mogli go ponownie wykorzystać. Pozdrowienia dla autora! Możesz używać tej biblioteki prywatnie lub w innych publikacjach typu open source, ale ponowne użycie tego kodu w publikacji podlega Zasadom Regulaminu.

Wyłączenie odpowiedzialności