PINE LIBRARY

MLLossFunctions

1 837
Library "MLLossFunctions"
Methods for Loss functions.

mse(expects, predicts) Mean Squared Error (MSE) " MSE = 1/N * sum((y - y')^2) ".
  Parameters:
    expects: float array, expected values.
    predicts: float array, prediction values.
  Returns: float

binary_cross_entropy(expects, predicts) Binary Cross-Entropy Loss (log).
  Parameters:
    expects: float array, expected values.
    predicts: float array, prediction values.
  Returns: float

Wyłączenie odpowiedzialności

Informacje i publikacje nie stanowią i nie powinny być traktowane jako porady finansowe, inwestycyjne, tradingowe ani jakiekolwiek inne rekomendacje dostarczane lub zatwierdzone przez TradingView. Więcej informacji znajduje się w Warunkach użytkowania.