PINE LIBRARY

SignalProcessingClusteringKMeans

Library "SignalProcessingClusteringKMeans"
K-Means Clustering Method.

nearest(point_x, point_y, centers_x, centers_y) finds the nearest center to a point and returns its distance and center index.
Parameters:
  • point_x: float, x coordinate of point.
  • point_y: float, y coordinate of point.
  • centers_x: float array, x coordinates of cluster centers.
  • centers_y: float array, y coordinates of cluster centers.
    @ returns tuple of int, float.



bisection_search(samples, value) Bissection Search
Parameters:
  • samples: float array, weights to compare.
  • value: float array, weights to compare.

Returns: int.

label_points(points_x, points_y, centers_x, centers_y) labels each point index with cluster index and distance.
Parameters:
  • points_x: float array, x coordinates of points.
  • points_y: float array, y coordinates of points.
  • centers_x: float array, x coordinates of points.
  • centers_y: float array, y coordinates of points.

Returns: tuple with int array, float array.

kpp(points_x, points_y, n_clusters) K-Means++ Clustering adapted from Andy Allinger.
Parameters:
  • points_x: float array, x coordinates of the points.
  • points_y: float array, y coordinates of the points.
  • n_clusters: int, number of clusters.

Returns: tuple with 2 arrays, float array, int array.
arraysclusterkmeanslabelsignalprocessingstatistics

Biblioteka Pine

W prawdziwym duchu TradingView autor opublikował ten kod Pine jako bibliotekę typu open source, aby inni programiści Pine z naszej społeczności mogli go ponownie wykorzystać. Pozdrowienia dla autora! Możesz używać tej biblioteki prywatnie lub w innych publikacjach typu open source, ale ponowne użycie tego kodu w publikacji podlega Zasadom Regulaminu.

Wyłączenie odpowiedzialności