Library "MarkovChain"
Generic Markov Chain type functions.
---
A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the
probability of each event depends only on the state attained in the previous event.
---
reference:
Understanding Markov Chains, Examples and Applications. Second Edition. Book by Nicolas Privault.
en.wikipedia.org/wiki/Markov_chain
www.geeksforgeeks.or...-markov-chain-set-2/
towardsdatascience.c...-chains-2c8cab9c98ab
github.com/mxgmn/MarkovJunior
stats.stackexchange....s-from-sequence-data
timeseriesreasoning....idden-markov-models/
www.ris-ai.com/markov-chain
github.com/coin-or/j...v/MarkovProcess.java
gist.github.com/msch...b21fdf819e097f570f06
github.com/rasmusab/.../blob/master/mcmc.js
gist.github.com/sath...1a8ca779946ef5558702
writings.stephenwolf...mputational-systems/
kevingal.com/blog/boardgame.html
towardsdatascience.c...-chains-2c8cab9c98ab
spedygiorgio.github....reference/index.html
github.com/alexsosn/...c8f86eb4/Ch16/HMM.py
www.projectrhea.org/...Hidden_Markov_Chains
method to_string(this)
Translate a Markov Chain object to a string format.
Namespace types: MC
Parameters:
this (MC): `MC` . Markov Chain object.
Returns: string
method to_table(this, position, text_color, text_size)
Namespace types: MC
Parameters:
this (MC)
position (string)
text_color (color)
text_size (string)
method create_transition_matrix(this)
Namespace types: MC
Parameters:
this (MC)
method generate_transition_matrix(this)
Namespace types: MC
Parameters:
this (MC)
new_chain(states, name)
Parameters:
states (state)
name (string)
from_data(data, name)
Parameters:
data (string)
name (string)
method probability_at_step(this, target_step)
Namespace types: MC
Parameters:
this (MC)
target_step (int)
method state_at_step(this, start_state, target_state, target_step)
Namespace types: MC
Parameters:
this (MC)
start_state (int)
target_state (int)
target_step (int)
method forward(this, obs)
Namespace types: HMC
Parameters:
this (HMC)
obs (int)
method backward(this, obs)
Namespace types: HMC
Parameters:
this (HMC)
obs (int)
method viterbi(this, observations)
Namespace types: HMC
Parameters:
this (HMC)
observations (int)
method baumwelch(this, observations)
Namespace types: HMC
Parameters:
this (HMC)
observations (int)
Node
Target node.
Fields:
index (series int): . Key index of the node.
probability (series float): . Probability rate of activation.
state
State reference.
Fields:
name (series string): . Name of the state.
index (series int): . Key index of the state.
target_nodes (Node): . List of index references and probabilities to target states.
MC
Markov Chain reference object.
Fields:
name (series string): . Name of the chain.
states (state): . List of state nodes and its name, index, targets and transition probabilities.
size (series int): . Number of unique states
transitions (matrix<float>): . Transition matrix
HMC
Hidden Markov Chain reference object.
Fields:
name (series string): . Name of thehidden chain.
states_hidden (state): . List of state nodes and its name, index, targets and transition probabilities.
states_obs (state): . List of state nodes and its name, index, targets and transition probabilities.
transitions (matrix<float>): . Transition matrix
emissions (matrix<float>): . Emission matrix
initial_distribution (float)
Generic Markov Chain type functions.
---
A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the
probability of each event depends only on the state attained in the previous event.
---
reference:
Understanding Markov Chains, Examples and Applications. Second Edition. Book by Nicolas Privault.
en.wikipedia.org/wiki/Markov_chain
www.geeksforgeeks.or...-markov-chain-set-2/
towardsdatascience.c...-chains-2c8cab9c98ab
github.com/mxgmn/MarkovJunior
stats.stackexchange....s-from-sequence-data
timeseriesreasoning....idden-markov-models/
www.ris-ai.com/markov-chain
github.com/coin-or/j...v/MarkovProcess.java
gist.github.com/msch...b21fdf819e097f570f06
github.com/rasmusab/.../blob/master/mcmc.js
gist.github.com/sath...1a8ca779946ef5558702
writings.stephenwolf...mputational-systems/
kevingal.com/blog/boardgame.html
towardsdatascience.c...-chains-2c8cab9c98ab
spedygiorgio.github....reference/index.html
github.com/alexsosn/...c8f86eb4/Ch16/HMM.py
www.projectrhea.org/...Hidden_Markov_Chains
method to_string(this)
Translate a Markov Chain object to a string format.
Namespace types: MC
Parameters:
this (MC): `MC` . Markov Chain object.
Returns: string
method to_table(this, position, text_color, text_size)
Namespace types: MC
Parameters:
this (MC)
position (string)
text_color (color)
text_size (string)
method create_transition_matrix(this)
Namespace types: MC
Parameters:
this (MC)
method generate_transition_matrix(this)
Namespace types: MC
Parameters:
this (MC)
new_chain(states, name)
Parameters:
states (state)
name (string)
from_data(data, name)
Parameters:
data (string)
name (string)
method probability_at_step(this, target_step)
Namespace types: MC
Parameters:
this (MC)
target_step (int)
method state_at_step(this, start_state, target_state, target_step)
Namespace types: MC
Parameters:
this (MC)
start_state (int)
target_state (int)
target_step (int)
method forward(this, obs)
Namespace types: HMC
Parameters:
this (HMC)
obs (int)
method backward(this, obs)
Namespace types: HMC
Parameters:
this (HMC)
obs (int)
method viterbi(this, observations)
Namespace types: HMC
Parameters:
this (HMC)
observations (int)
method baumwelch(this, observations)
Namespace types: HMC
Parameters:
this (HMC)
observations (int)
Node
Target node.
Fields:
index (series int): . Key index of the node.
probability (series float): . Probability rate of activation.
state
State reference.
Fields:
name (series string): . Name of the state.
index (series int): . Key index of the state.
target_nodes (Node): . List of index references and probabilities to target states.
MC
Markov Chain reference object.
Fields:
name (series string): . Name of the chain.
states (state): . List of state nodes and its name, index, targets and transition probabilities.
size (series int): . Number of unique states
transitions (matrix<float>): . Transition matrix
HMC
Hidden Markov Chain reference object.
Fields:
name (series string): . Name of thehidden chain.
states_hidden (state): . List of state nodes and its name, index, targets and transition probabilities.
states_obs (state): . List of state nodes and its name, index, targets and transition probabilities.
transitions (matrix<float>): . Transition matrix
emissions (matrix<float>): . Emission matrix
initial_distribution (float)