tbiktag

LinearRegressionLibrary

Library "LinearRegressionLibrary" contains functions for fitting a regression line to the time series by means of different models, as well as functions for estimating the accuracy of the fit.

Linear regression algorithms:

RepeatedMedian(y, n, lastBar) applies repeated median regression (robust linear regression algorithm) to the input time series within the selected interval.
Parameters:
  • y :: float series, source time series (e.g. close)
  • n :: integer, the length of the selected time interval
  • lastBar :: integer, index of the last bar of the selected time interval (defines the position of the interval)
Output:
  • mSlope :: float, slope of the regression line
  • mInter :: float, intercept of the regression line


TheilSen(y, n, lastBar) applies the Theil-Sen estimator (robust linear regression algorithm) to the input time series within the selected interval.
Parameters:
  • y :: float series, source time series
  • n :: integer, the length of the selected time interval
  • lastBar :: integer, index of the last bar of the selected time interval (defines the position of the interval)
Output:
  • tsSlope :: float, slope of the regression line
  • tsInter :: float, intercept of the regression line

OrdinaryLeastSquares(y, n, lastBar) applies the ordinary least squares regression (non-robust) to the input time series within the selected interval.
Parameters:
  • y :: float series, source time series
  • n :: integer, the length of the selected time interval
  • lastBar :: integer, index of the last bar of the selected time interval (defines the position of the interval)
Output:
  • olsSlope :: float, slope of the regression line
  • olsInter :: float, intercept of the regression line

Model performance metrics:

metricRMSE(y, n, lastBar, slope, intercept) returns the Root-Mean-Square Error (RMSE) of the regression. The better the model, the lower the RMSE.
Parameters:
  • y :: float series, source time series (e.g. close)
  • n :: integer, the length of the selected time interval
  • lastBar :: integer, index of the last bar of the selected time interval (defines the position of the interval)
  • slope :: float, slope of the evaluated linear regression line
  • intercept :: float, intercept of the evaluated linear regression line
Output:
  • rmse :: float, RMSE value

metricMAE(y, n, lastBar, slope, intercept) returns the Mean Absolute Error (MAE) of the regression. MAE is is similar to RMSE but is less sensitive to outliers. The better the model, the lower the MAE.
Parameters:
  • y :: float series, source time series
  • n :: integer, the length of the selected time interval
  • lastBar :: integer, index of the last bar of the selected time interval (defines the position of the interval)
  • slope :: float, slope of the evaluated linear regression line
  • intercept :: float, intercept of the evaluated linear regression line
Output:
  • mae :: float, MAE value

metricR2(y, n, lastBar, slope, intercept) returns the coefficient of determination (R squared) of the regression. The better the linear regression fits the data (compared to the sample mean), the closer the value of the R squared is to 1.
Parameters:
  • y :: float series, source time series
  • n :: integer, the length of the selected time interval
  • lastBar :: integer, index of the last bar of the selected time interval (defines the position of the interval)
  • slope :: float, slope of the evaluated linear regression line
  • intercept :: float, intercept of the evaluated linear regression line
Output:
  • Rsq :: float, R-sqared score


Usage example:

//@version=5
indicator('ExampleLinReg', overlay=true)
// import the library
import tbiktag/LinearRegressionLibrary/1 as linreg
// define the studied interval: last 100 bars
int Npoints = 100
int lastBar = bar_index
int firstBar = bar_index - Npoints
// apply repeated median regression to the closing price time series within the specified interval
{square bracket}slope, intercept{square bracket} = linreg.RepeatedMedian(close, Npoints, lastBar)
// calculate the root-mean-square error of the obtained linear fit
rmse = linreg.metricRMSE(close, Npoints, lastBar, slope, intercept)
// plot the line and print the RMSE value
float y1 = intercept
float y2 = intercept + slope * (Npoints - 1)
if barstate.islast
{indent} line.new(firstBar,y1, lastBar,y2)
{indent} label.new(lastBar,y2,text='RMSE = '+str.format("{0,number,#.#}", rmse))

If you enjoy using my scripts, consider becoming a supporter: https://www.buymeacoffee.com/tbiktag

A word of caution: always be aware of the risks and do not interpret data produced by the script or contained in the preview chart as trading advice.
Biblioteka Pine

Działając zgodnie z prawdziwym duchem TradingView, autor opublikował ten kod Pine jako bibliotekę o otwartym kodzie źródłowym, aby inni programiści Pine z naszej społeczności mogli go ponownie wykorzystać. Brawa dla niego! Możesz korzystać z tej biblioteki prywatnie lub w innych publikacjach typu open source, ale ponowne wykorzystanie tego kodu w publikacji podlega Regulaminowi.

Wyłączenie odpowiedzialności

Informacje i publikacje przygotowane przez TradingView lub jego użytkowników, prezentowane na tej stronie, nie stanowią rekomendacji ani porad handlowych, inwestycyjnych i finansowych i nie powinny być w ten sposób traktowane ani wykorzystywane. Więcej informacji na ten temat znajdziesz w naszym Regulaminie.

Chcesz skorzystać z tej biblioteki?

Skopiuj poniższy wiersz i wklej go w swoim skrypcie.